
PROJECT SUMMARY
Overview:
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The shortage of natural pollinators is threatening global food production, making it increasingly difficult 
to feed the ever-growing human population on Earth. Robotic pollinators can supplement insect 
pollinators to improve food security. They can provide additional services such as mapping and flower 
data collection. Robotic pollinators will also work in controlled environments not suitable for natural 
pollinators. To help realize these benefits, the objectives of this project are to 1) significantly improve the 
effectiveness and 2) lower the entry barrier of robotic pollination technology. The project aims to address 
several research challenges associated with precision robotic pollination: the spatial-temporal 
development of crops and flowers, the similarity of flowers in a cluster, the unstructured plants with 
occlusions, the large number of flowers needed to be pollinated, among others. To meet these challenges, 
the design of a six-armed precision robotic pollinator for greenhouse environments, StickBug, is 
proposed. Systematic field experiments are designed to evaluate StickBug’s pollination effectiveness and 
its ability to work alongside human growers. 
 
Keywords: Design, Human-Robot Interaction, Perception, Planning, Agriculture 
 
Intellectual Merit:
1) The project integrates agriculture domain knowledge, custom robot design, robotics algorithms, and 
human systems methods to solve a complex real-world challenge. The complexity of the problem being 
tackled, i.e., large-scale manipulation of delicate flowers in diverse situations, is beyond most of the field 
robots in the past. 2) Knowledge and insights gained through this effort will advance robotics research in 
areas such as semantic mapping in dynamic environments, manipulation of deformable objects under 
occlusions, multi-arm task coordination, and tracking similar-looking objects under motions. 3) The 
emphasis on field testing and comprehensive evaluation of pollinator effectiveness will help close the gap 
between academic robotics research and the needs in real-world applications. 4) The development of 
algorithms to compensate uncertainties associated with using low-cost hardware components will help 
popularize low-cost robot’s use in different applications. 5) The integration of human studies with the 
robot design and evaluation process will help make the robotic pollination technology acceptable to 
growers. 
 
Broader Impacts:
1) With the aid of robotic pollinators, growers can overcome the shortage of natural pollinators to achieve 
improved productivity and obtain higher profit opportunities by planning flexible pollination schedules. 
2) The pollination robot allows for selective pollination and better management of crops by timing and 
tracking pollinated flowers. 3) The ability for StickBug to manipulate delicate flowers in unstructured 
environments at a large scale will contribute to innovations in precision agriculture applications. 4) The 
project will create research and learning opportunities for undergraduate and graduate students from 
underrepresented groups, such as from socio-economically disadvantaged regions. 5) The open sharing of 
the proposed pollinator robot design, algorithms, and simulators would promote community 
collaborations. 6) The research activities will be integrated with workforce development to popularize 
robotics technologies in agriculture. 7) The project will promote outreach activities through the 
development of interactive robotic pollination demonstrations. 
 
Requested funding agency: USDA/NIFA 
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Collaborative Research: NRI: StickBug – an Effective Co-Robot  
for Precision Pollination  

1. Motivation 
Feeding an ever-growing human population on Earth with deteriorating farmlands (Pan et al., 2016, 

Gray, 2019), a changing climate (Parry, 2019), and stressed ecosystems (Crist et al., 2017) is a formidable 
challenge for humanity. Within the delicately balanced food production process, insects, especially bees, 
play an important role in flower pollination. Without the pollinators, we would not be able to enjoy most 
tree fruits (e.g., apples, peaches), berries (e.g., strawberries, blackberries), melons, coffee, and more. 
Studies have shown that 87 out of 115 leading global food crops (Klein, 2007), and approximately one in 
three bites of our food (Buchmann & Nabhan, 2012), rely on pollinators. Globally, pollinators contribute 
to between $235 and $577 billion worth of annual food production (FAO, 2016).   

This dependence on natural pollinators comes with risks and limitations. The global decline of bee 
population and diversity (Potts et al., 2016; Zattara & Aizen, 2020) has threatened agricultural production. 
Many farmers rent bees with growing costs (Sumner & Boriss, 2006; Lee et al., 2019). The increasing 
agriculture production in controlled environments (Benke & Tomkins, 2017) also presents challenges for 
bees, in settings that they either do not like or cannot survive.         

Our long-term goal is to design robots that can take care of individual crops efficiently (i.e., 
phytotechnology; Blackmore, 2004). Like insects, future robots would provide precision services such as 
pollinating individual flowers economically at a large scale. Instead of developing these robots as bee 
replacements, we see them as a “plan-B” (i.e., for improved food security during insect declines), for 
supporting indoor agriculture, and for providing services beyond what insects can do, such as data 
collection. More specifically, the objectives of this proposed project are to 1) significantly improve the 
effectiveness and 2) lower the entry barrier of robotic pollination technology. The pollination 
effectiveness will be experimentally evaluated based on the flower pollination rate, quality of pollination, 
handling of difficult situations (e.g., occluded flowers), and system reliability in greenhouse 
environments. The effort on lowering of entry barriers will focus on developing robust algorithms to 
tackle the challenges associated with the use of low-cost components and the human-in-the-loop studies 
for improving the acceptance and usability of the technology by the growers. In addition, we recognize 
that the successful development, deployment, and popularization of robotic pollination technology would 
need significant community effort. Therefore, we strive to make our research open with the sharing of our 
hardware design, algorithms, software, simulation, and data sets.  

2. Previous Relevant Work by Members of the Proposal Team 
With a recently concluded project funded by 

USDA/NIFA under NRI, we developed a prototype 
robot for precision pollinating Bramble (e.g., 
blackberry) flowers in greenhouses. The fully 
autonomous robot, named BrambleBee (Fig.1), is able 
to map an unknown environment, identify flowers, 
estimate their poses, and perform precise manipulation 
of flowers for pollen transfer (Ohi et al., 2018; Strader 
et al., 2019; Yang et al., 2019; Mills et al., 2020). Our 
bee studies also helped understand their microstructure 
and movements for pollination (Park, 2017). 
BrambleBee received media mention by Wired, the 
Fruit Grower Magazine (cover story), Fast Company, 
TechXplore, Science, among others.  

 
Fig.1. BrambleBee robot during an experiment at a 

West Virginia University (WVU) greenhouse. 
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During this past exploratory study, we have identified eight challenges associated with precision 
robotic pollination that would need further research to overcome: 

1. Flowers do not bloom at the same time and each has a limited pollination window, making it 
important to track the spatial-temporal development of flowers over time. 

2. The flower clusters, with multiple similar looking flowers overlapping each other, present 
significant perception and manipulation challenges (see Fig. 2 for an example). 

3. The robot needs to be able to reach flowers that are tall, low, angled inward, or occluded (see 
Figs. 1 and 2). 

4. There can be significant mobility difficulties for a wheeled robot to navigate around crops in 
close quarters, even in a semi-structured 
greenhouse environment. 

5. The robotic pollination system needs to 
work alongside with and be easily 
accepted by growers. 

6. The robotic pollinator needs to handle 
significant natural variations of flowers 
and be adaptable to different crops. 

7. Pollination effectiveness, including 
success rate, throughput, and the quality of 
pollination, needs continued improvement 
to produce the quality and quantity of 
fruits comparable to insect pollination. 

8. The overall system cost must be reduced, 
and reliability improved for robotic 
pollinators to become a practical 
component of agriculture systems. 

If BrambleBee showed that precision robotic pollination is a technologically feasible concept, this 
project would demonstrate that it also can be a practical solution. In this proposed project, we aim to 
address Challenges 1 - 5 above and make significant progress on Challenges 6 - 8 through an innovative 
integration of hardware designs, algorithms, and human studies.   

3. Background 
3.1. Pollination 

Pollination is a complex process that is vital for fruit development. Pollination occurs when pollen 
from the anther (male component) is placed on the stigma of a pistil (female component) of a flower. The 
pollen grains then germinate to produce pollen tubes containing two sperm nuclei. One of the sperm 
nuclei fuses with an egg to create an embryo, and the other nucleus mates with two polar nuclei to 
become an endosperm.  An embryo, an endosperm, and a seed coat consist of a seed.  The mating 
processes between sperm nuclei and nuclei of an egg is called fertilization. Once fertilization is 
completed, a fruit starts to develop (Acquaah, 2008). Thus, pollination is the first step of fruit 
development.   

Currently, pollinators can be purchased or rented for field crop production during the flowering 
season. Field production allows natural pollinators to help with pollination. However, in controlled 
environment agriculture such as greenhouses, pollinators have to be artificially introduced. In greenhouse 
production, hives of bees are purchased and placed inside. If the lifespan of the bees is shorter than the 
flowering period, hives must be continually replaced (Petrovic, 2017). This continual replacement of 
pollinators adds additional cost and stress for growers to ensure that hives arrive on time. Additionally, in 
controlled environments, bees are not as active or efficient as they were in nature due to the relatively 
higher temperature and humidity. Bees also tend to escape from the greenhouse. Whittington et al. (2004) 

 
Fig.2. Example of bramble flower clusters and occlusions 

that make robotic pollination a challenging problem. 
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evaluated the pollen collected by bumblebees in a greenhouse. Bees were released to pollinate tomatoes 
and were allowed to exit and return to their hive in the greenhouse. Depending on the time of year and 
availability of other plants, up to 73% of the pollen was from other plants than tomatoes. This study 
stressed that the bees were not necessarily pollinating only crops of the grower’s choice. In addition, the 
bees are also treated as disposable commodities. The pollination activity only lasts for four to six weeks 
(Biobest, 2021). Once the pollination begins to decline, the hives harboring the queen bee need to be 
disposed of. The longevity of the hive is not expected to last beyond the pollination period and does not 
support the reproduction of the bees. Generally, the greenhouse environment is not ideal for bees (Goff, 
2021), and an alternative method of pollination is desired. 

3.2. Agriculture Robotics Research 

High-value specialty crops are getting special treatments by robots. Working at the individual plant-
scale, robots are being developed for planting (Srinivasan et al., 2016), inspection (Bengochea-Guevara et 
al., 2014), pruning (Botterill et al., 2017), selective irrigation/fertilization application (Thayer et al., 2018; 
Shivaprasad et al., 2014), phenotyping (Mueller-Sim et al., 2017; Young et al., 2019), pollination, fruit 
picking (Li et al., 2016; Zhang et al., 2016; Silwal et al., 2017; Xiong et al., 2020), among others 
(Vougioukas, 2019). This has become a new frontier for precision agriculture and an active playground 
for field roboticists. 

Each plant is a unique living creature. For a robot to effectively interact with a part of the plant (e.g., 
branches/canes, leaves, flowers, fruits, etc.), it must overcome several challenges. First, the robots need to 
deal with the semi-structured environments and unstructured plants with significant natural variations 
(Bechar & Vigneault, 2016). Second, crops are often densely populated with occlusions. Third, plants are 
changing over time with both slow (e.g., growth) and fast movements (e.g., touched by growers or 
robots). Fourth, manipulating delicate living cells (e.g., flowers, fruits) requires carefully designed 
mechanisms and maneuvers. Finally, there would be many individual plants, and even more fruits and 
flowers, in an agriculture production system for the robots to handle.      

Although very few agricultural robots focused on plant-scale applications have matured to the 
commercial production level yet, significant progress has been made by the community to overcome these 
challenges (Vougioukas, 2019). A commonly adopted approach is “structuralization”; i.e., transforming 
the production setting to fit automation goals. This is sometimes achieved through a co-design process 
(Bloch et al., 2018) that optimizes the field layout, crop training, and the robot design together as a 
system. This approach, however, makes the developed robot system more specialized (e.g., performing a 
particular task on a particular crop in a particular environment). A few systems also leverage human 
abilities to bypass some hard robotic tasks, such as delicate and dexterous manipulation for fruit picking 
(Lu et al., 2017). 

In the long run, with improved autonomy, robots would become general-purpose grower assistants 
that can better deal with unstructured environments and complex situations. Precision robotic pollination 
that requires physically touching the flowers for pollen transfer is one area that could greatly benefit from 
these advancements. Compared to fruit picking, research on robotic pollination has been very limited. 
Several robotics researches used pollination as an aspirational, instead of a tangible goal (Binns, 2009; 
Wood et al., 2009; Berman et al., 2011). The few actual robotic pollination studies so far have involved 
non-precision approaches (Yang & Miyako, 2020), precision non-contact based pollination such as 
targeted spaying (Yuan et al., 2016; Williams et al., 2020), and precision contact based pollination 
(Shaneyfelt et al., 2013; Ohi et al., 2018, Strader et al., 2019) like actual insects would do. Making robots 
that can precisely detect, localize, and manipulate a large number of flowers in common agriculture 
settings is still a major engineering challenge.   

Several underlying technologies needed for robotic pollination, such as mapping, object recognition, 
inspection, and path planning, are shared with robots developed for fruit picking and phenotyping 
applications (Sa et al., 2016; Vázquez-Arellano et al., 2016; Dias et al., 2018). The ability to sense, 
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evaluate, and manipulate flexible objects, such as branches/canes, developed for robotic pruning research 
(Botterill, et al, 2017; He & Schupp, 2018; Zhang et al., 2019), may help robots to pollinate flowers in 
hard to reach places. In return, the specialized knowledge acquired through developing precision robotic 
pollinators, such as perception and fine manipulation of delicate flowers in cluttered environments, would 
contribute to the community for solving other agricultural robotics problems such as harvesting small 
berries.  

3.3. Human-Robot Interaction (HRI) Challenges in the Agriculture Setting 

While traditional agricultural robots are normally physically separated from humans working on other 
tasks, collaborative robots are designed to work alongside human co-workers. However, by putting robots 
into greenhouses or other agricultural settings, new safety hazards may be introduced (e.g., collision, 
excessive cognitive stress, etc.). If done indiscriminately, just because a robot can do a task, it does not 
always improve the job for the operator and in some cases can reduce productivity or increase physical 
and mental workload. However, with more than 50 studies in agricultural robotics research identified by 
Hajjaj and Sahari (2014, 2016), there is almost no mention of collaborative HRI frameworks that are 
specific to agriculture. The only study that was mentioned in the reviews is Kashiwazaki et al. (2010)’s 
cart style robot for greenhouse work. Another review by Vasconez et al. (2019), also portrait the same 
situation, with only one of the studies feature a collaborative robotics experiment (Oren et al., 2008).  

The adoption of new technologies in agriculture is rarely immediate. Technology adoption is a 
complex activity and many factors influence these decision-making processes (Agarwal et al., 1999; 
Dimara et al., 2003). A rich body of the literature has confirmed the environmental and economic benefits 
derived from robotics and/or technology-based precision agriculture (Batte et al., 2003; Pierce et al., 
2008). Nonetheless, a low rate of adoption is still observed by both academic surveys and professional 
reports (Ellis et al., 2010; Fountas et al., 2005) among precision agriculture industries. Some of the 
important aspects catalyzing the adoption of precision agriculture technologies include costs reduction 
(increasing profitability) (Hite et al., 2002; Adrian et al., 2005; Folorunso et al., 2008), and adopter’s 
confidence in the technology (Aubert et al., 2012; Marra et al., 2010). Therefore, in this proposed project, 
we aim to lower the entry barriers by leveraging participatory design (Spinuzzi, 2005; Robertson & 
Simonsen, 2012) approach and user-centered theory (Johnson, 1998) to foster a higher adoption of the 
precision pollination robot.  

4. Technical Approach 
4.1. Crop Selection 

Two horticulturally important crops, blackberry and tomato, have been selected for this project. 
Blackberries (Rubus fruticosus) are referred to as caneberries or brambles. Blackberry production has 
been increasing in the U.S. In 2017 the value of the crop was estimated at $31.1 million, which was up 
4% from the previous years (USDA NASS, 2018). The production increase was partially stimulated by 
the demand for fruits viewed as health-promoting crops. Brambles contain high vitamin C, folate, and 
anthocyanin contents (North American Raspberry and Blackberry Association, 2021). Thus, brambles are 
regarded as high-value crops providing health benefits from anticancer, antiviral, and antiallergenic 
properties for consumers and a high profit for growers (Hummer, 2010). Our second crop is tomato 
(Solanum lycopersicum), one of the top three vegetable crops produced in the U.S. The value of tomatoes 
grown in the U.S. in 2020 was $1.66 billion, a 4% increase from 2019 (USDA NASS, 2021).  

While both crops are popular, increasing in consumption, and having potential health benefits, they 
have different pollination mechanisms. Blackberry flowers consist of hundreds of pistils and develop into 
druplets after pollination. The druplets are attached to a receptacle to form the core of the fruit. Because 
of the large number of pistils, it is not easy to pollinate all pistils. Bulk pollen transfer using a mechanical 
tool facilitates blackberry pollination. On the other hand, the tomato has a single pistil with anthers below 
it.  Because the flower faces downward, the flower requires vibration (sonication) to pollinate the flower. 
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Blackberries are pollinated once a year in the spring and tomatoes in the greenhouse require 30-35 weeks 
long pollination per year (Goff, 2021). Both crops need pollinators for adequate fruit development. 
Through working with these two crops with very different pollination requirements, we are hoping to gain 
insights and experiences for adapting the robotic pollination technology to more crop types. 

4.2. Overall System Design  

4.2.1. Use case scenario 
A typical application of the proposed precision pollination system is illustrated in Fig. 3. In this 

scenario, a robotic pollinator works alongside growers in a large greenhouse setting when the flowers are 
in need for pollination. The robot 
is responsible for the time-
consuming tasks of flower 
inspection, mapping, pollination, 
and development tracking. The 
growers are mainly taking care of 
other greenhouse tasks (e.g., 
planting, irrigation, pest control) 
and providing support to the 
robot.  

The daily schedule of the 
robot pollinator starts from an 
inspection pass in the greenhouse, 
where it updates a semantic map 
and evaluates the spatial 
distribution of flowers and the 
pollination workload. Based on 
this map and with inputs from the growers, the robot’s overall pollination route is planned. Along the 
route, the robot would stop in small increments (e.g., 60 cm, about one robot base width) if there are 
flowers to be pollinated. At each stop, it first creates a detailed 3D semantic map of the local workspace, 
including labeling of flowers and their poses, canes, and other relevant features. Using this map, the task 
for each of the robot’s six arms are planned (e.g., for pollination or pushing aside a cane). The robot then 
pollinates all the reachable flowers in the local workspace before moving on to the next stop.   

4.2.2. Precision pollination robot design 
A preliminary design of the proposed robotic pollinator, StickBug, is shown in Fig. 4. The robot has a 

holonomic drive base that allows fine adjustments of the robot pose to fit in tight spaces for reaching 
flowers. The main structure on the drive base is a vertical lift made of a long lead screw and a support 
column. Three “elevator cabs” move up and down on the leadscrew and each of them carries a pair of 
robotic arms. The vertical lift allows the arms to have a large workspace along the robot z-axis, in order to 
reach flowers that are located high or low on a plant. For the prototype robot, each robotic arm will 
consist of five Dynamixel servos. The linear motion by the “elevator” that is shared by each pair of the 
left and right arms, along with the actuations of the end effectors contribute to additional Degrees of 
Freedom (DoF) for manipulation. The robot is designed to be inherently safe (Möller & Hansson, 2008) 
with low potential and kinetic energy (e.g., similar to human body mass but with a low center of gravity 
and slow max speed of 0.5 m/s), along with short and weak arms. Additionally, the robot will be equipped 
with emergency lights and E-stops, in addition to active recognition and warning of nearby people.  

Exchangeable end effector designs (e.g., for flower pollination and for cane gripping) will be used on 
the arms, as illustrated in Figs. 4 and 5, to support different situations and task requirements. The 
pollination end effector (Fig. 5, left) would be a soft parallel manipulator (with a flexible center joint) that 
can provide three DoF motion: one translation (i.e., moving forward/backward) and two rotations (i.e., 

 
Fig. 3. Illustration of a grower checking on the work of a pollination robot 
in a simulated greenhouse environment. The robot height is about 2 meters. 
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pitching up/down and yawing left/right). It can also generate orbital motions of the pollination tip for 
simulating bee’s movements in a flower (Park 2017). The flower interface, i.e., the tip of the end effector, 
will be tailored for the type of crop to be pollinated. For example, dewaxed goose down, which was found 
in our previous study to be similar to the microstructure and mechanical quality of bee’s hair for pollen 
gathering, would be used for bramble flower pollination. Alternatively, a vibrator, simulating 
bumblebee’s motions, would be used for tomato flower pollination. Another end effector, a gripper, will 
have a compliant design and tactile/force feedback for grabbing canes. The design of StickBug leverages 
the vertical lift, the Dynamixel arm, and the gripper design from a robot we developed for the University 
Rover Challenge (Fig. 5, right). The pollination end effector designs will also evolve from the design 
made for BrambleBee (Fig. 5, left).  

The robot sensors will include an 
Analog Devices iSensor Inertial 
Measurement Unit (IMU), three wheel 
encoders, two 170 degree field of view 
Intel Realsense T265 stereo cameras on 
top of the vertical lift (back to back and 
tilt down 30 degrees) for greenhouse 
mapping and human detection, and three 
Intel Realsense L515 Lidars on the robot 
base for obstacle avoidance. Additionally, 
a L515 Lidar will be mounted on the 
center of each of the “elevator”. With 
vertical linear movements, these RGB-D 
sensors can quickly scan the pollination 
workspace in front of the robot and 
provide a detailed 3D map. They would 
also support real-time pose estimation for 
the low-cost manipulators, to be 
discussed in the “robot perception” 
section later. On each pollination end 

effector, a RGB camera will be used for guiding the pollinator motion, coupled with an IR proximity 
sensor to confirm the touching of a flower. On the end effector for gripping, an Intel Realsense D435 
RGB-D camera will be used to help estimating the pose of canes and tactile sensors will be used for touch 
sensing. The sensor data will be fed to and shared by two onboard computers on a local network, one 
dedicated for robot perception and another one for planning and control. The robot will be powered by Li-
Fe batteries through a custom power management system designed at WVU. The large battery packs will 
ensure continuous operation of the robot for over four hours between automatic charges or the manual 
change of battery packs by a grower. Two practical challenges associated with this robot design are 
expected to be the cable management of a six-armed robot and the calibration of extrinsic parameters of 
cameras mounted on the low-cost and less-precise robotics arms. The latter will be discussed further in 
the next section. 

The human grower support includes overseeing the robot’s work, making high-level decisions, 
providing performance feedback, reporting issues, performing routine maintenance, and occasional 
troubleshooting. The robot will communicate to the growers’ phones with a local Wi-Fi network. Using 
the phone, a grower can monitor the robot’s activity (e.g., real-time pollination statistics), see its plans, 
and provide inputs to the robot. The same information is also displayed on the touch screen carried on the 
back of the robot.  

The design of StickBug builds upon lessons learned with BrambleBee. StickBug design addresses the 
mobility and control challenges around crops with a holonomic drive base, supports faster pollination 

 
Fig. 4. Conceptual design of the proposed StickBug robot. Stick 

bug cartoon (top left corner): Chris Naylor-Ballesteros. 
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(with six manipulators) and a larger 
workspace (with the vertical lift), allows 
handling of more complex situations (e.g., 
cane moving) and improved human-robot 
collaboration. StickBug is also expected to 
cost four times less than BrambleBee at 
approximately $25k for the prototype. The 
use of low-cost components in the StickBug 
design creates several robot perception and 
decision-making challenges, which will be 
discussed in the sections below. In parallel 
with the physical robot development, we will 
also update our recently released robotic 
pollination simulation (WVU Robotics, 
2021) with the StickBug design (an example 
was showing earlier in Fig. 3) to support 
software development and integration.   

4.3. Robot Perception 

4.3.1. Localization and greenhouse semantic mapping  
Global mapping will consist of a Dynamic Scene Graph (DSG, Rosinol et al., 2020a) with three 

levels, 1) overall greenhouse, 2) individual pollination workspaces, and 3) underlying mesh, to inform the 
decision making of both the robot and humans working in the greenhouse. The top level of the DSG will 
consist of the entire greenhouse room and its overall structure and layout. This layer will be initialized 
using a prior map of the room with semantic labels associated with items such as: wall, floor, table, crop 
row, etc. It will be populated with sub-maps that each represent a local pollination workspace location. 
Metadata about each workspace, such as, the number of flowers, percentage pollinated, and percentage 
ready for pollination will be stored and globally referenced to inform robot motion planning. Further, 
humans and other likely dynamic objects that move throughout the top layer of the DSG will be identified 
and marked as dynamic so as not to impact the map following an approach such as (Scona et al., 2018). 
Additional objects such as tools placed by human growers will also be identified as dynamic objects for 
the same reason. Next, within a specific local workspace location, the second level in the DSG, will 
consist of a semantically labeled 3D map. This layer will be presented in more detail in the next 
subsection. Finally, the bottom layer within the DSG will consist of the underlying metric-semantic mesh 
constructed from stereo-Visual-Inertial Odometry (VIO).  

For each robot, the baseline localization approach for navigating of the top level of the DSG will 
consist of stereo-VIO using the two Intel Realsense T265 stereo cameras mounted on the top of the robot. 
Our stereo-VIO and mapping implementation will build upon the solution offered by the open-source 
Kimera VIO navigation stack (Rosinol et al., 2020b). In particular, to increase the level of precision and 
robustness, additional localization constraints from wheel odometry and robot dynamics (Kilic et al., 
2021) will be integrated into the back-end factor graph. The semantic image labels will be determined 
using a package such as Ultralytics open-source yolov5, and the Kimera-Semantics module (Rosinol, 
2020b) will be used to annotate the 3D metric mesh from 2D pixel-wise labels.   

4.3.2. Pollination workspace semantically labeled mapping  
For each pollination workspace location, a high-fidelity map will be estimated to support pollination 

planning and execution. To facilitate global planning, a summary of each workspace will be extracted for 
representation in the top layer (e.g., number of flowers in the workspace, percentage of pollinated flowers, 
number of buds that will soon become flowers). To estimate a semantically labeled map of a workspace, 
the primary input data will be the three L515 Lidar-cameras on the center of the robot manipulator lifts. 
To support faster mapping of the workspace and reduce the potential for flower occlusion, we will use the 

 
Fig. 5. (left) soft parallel end effector designed for BrambleBee 

pollination; (right) the linear vertical lift, Dynamixel servo 
based manipulator, and compliant gripper developed by the 

PI’s student competition team. 
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vertical lifts to move three RGB-D sensors to generate an independent 3D map with each sensor. The 
three maps will then be merged considering their overlapping regions (Li et al., 2019, Bonanni, et al., 
2017) and using the accurate position measurements along the vertical lift. Once a merged 3D map is 
created, just as in the greenhouse map, an object identification classifier, trained with a human-labeled 
data set, will distinguish between different image classes including: flowers (with assessment of its 
readiness for pollination), leaves, canes, and permanent greenhouse structure in the map. These 2D labels 
will then be used to annotate the 3D map given their known correspondences. This perception technology 
is readily available with existing open-source tools; however, we propose to address several important 
challenges that are widely applicable to low-cost precision agriculture robotics. 

One challenge will be to estimate the deformability and therefore maneuverability of the plants in the 
map to inform planning hard to reach flowers. As a baseline, we plan to empirically estimate a functional 
relationship between cane sizes/shape and deformability and then refine this model over time during 
operation. In particular, we will use (Huang et al., 2013) to extract the skeletal structure of the plant, 
including topology (e.g., branching) and cane lengths and diameters.  Using a force sensor on the robotic 
grabbing end effector, a series of tests will be conducted with input force and amount of deformation are 
varied for several different canes while grabbed at different locations.  A Gaussian Process Regression 
(GPR) will then estimate a baseline functional relationship. 

Another important challenge that must be overcome when pollinating a specific plant is the spatial-
temporal changes of the pollination workspace. For example, moving a cane to reach a flower would 
likely cause labeled and mapped flower clusters to shift, with some flowers to be occluded and others 
appearing as new. To handle data association under a highly dynamic condition, we plan to leverage the 
relatively fast update rate of the L515s (30 fps) to represent the plant as a Truncated Signed Distance 
Field (TSDF) using a solution such as DynamicFusion (Newcombe et al., 2015). To handle the challenges 
associated with slower motion, such as natural growth and the uncertainties due to sensor noise, we will 
represent each cluster as a graph, with the vertices being flower centers. Using the graph of a cluster to 
extract the topology, taking inspiration from (Chebrolu et al., 2020), we will implement a hidden Markov 
model to determine flower correspondences before and after an event and to account for missing 
correspondences or new flowers arising.  Once correspondences are established, the relative 
transformations for each flower with respect to its prior location in the map will be estimated to inform 
pollination planning. 

4.3.3. Flower pose estimation and active perception 
For the task of flower pose estimation and pollination, an operational challenge that must be 

overcome is the extrinsic calibration between the cameras used for workspace mapping and the cameras 
on end effectors. For example, with our low-cost robotic arms, we would not have reliable 
transformations from servo feedback to associate eye-in-hand cameras with the depth cameras (i.e., three 
L515) mounted on the robot. To address this, when visible in an L515, the poses of the end effectors will 
be estimated using a set of Kalman filters using observations from markers included on each end effector. 
Likewise, for an initial calibration before operational use, a calibration marker will be placed above each 
L515 such that each end-effector camera can look back and resolve its extrinsic calibration. 

The BrambleBee’s flower detection and pose estimation software leveraged a segmented point cloud 
of the flower from an RDG-D sensor to estimate flower pose using principal component analysis. In the 
proposed StickBug robot, we seek to perform flower pose estimation using only RGB cameras, in an 
effort to reduce cost (i.e., data throughput, computation). We propose to leverage recent developments in 
monocular RGB object pose estimation for manipulation tasks such as PoseCNN (Xiang et al., 2017) and 
SilohNet (Billings et al., 2019) for our problem given proper object segmentation and training. Active 
perception will be employed to reduce flower pose uncertainty during a pollination sequence and account 
for uncertainty in the state transition model. In particular, we will empirically determine the uncertainty of 
the pose estimator as a function of relative geometry through controlled tests (e.g., using a flower model 
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at several known poses). This will enable us to determine the direction of the motion that can reduce pose 
covariance to be integrated in the motion planner’s cost function later.  

4.4. Robot Decision Making and Planning 

4.4.1. Robot drive planning  
StickBug’s drive planning includes the planning of the initial inspection path for creating/updating the 

DSG, the planning of a pollination route and a sequence of poses along the route for the robot to stop and 
pollinate flowers, as well as the motion planning for reaching desired goal poses while avoiding obstacles 
along the way. The planning of both the inspection and the pollination paths can be considered as solving 
different variations of Vehicle Routing Problems (VRP) and will be built upon our previous work on 
pollination route planning (Tatsch, 2020).  

Based on the prior map of the greenhouse environment, a graph is first built to represent topological 
relationships of different points of interest within the greenhouse. The inspection path will be first solved 
using the Google Operations Research (OR) tools (van Omme et al., 2014). This initial path will be 
modified online during the DSG map creating/updating process to drive down local uncertainties in the 
map using an information-theoretic approach (Bircher et al., 2016). Occasional replanning using the OR-
tools may be needed when an edge (e.g., a corresponded crop row) is found to be blocked.    

The pollination route planning will be modeled as a VRP with Time Windows (VRPTW) problem 
(Cordeau et al., 2000). Compared to the inspection path planning problem earlier, there are several 
differences here. First, the topological graph (i.e., the roadmap) will be expanded so that the robot can 
visit both sides of the crop rows in close proximity (Tatsch, 2020). The pollination stopping poses would 
be predetermined so that the mapping of each workspace can correspond to the previous data in the DSG. 
Note that not all stopping poses need to be selected by the pollination route. Second, the value of each 
edge would incorporate the estimated number of flowers to be pollinated along this segment, using the 
information provided by the DSG. Third, the robot may not be able to complete a full pollination pass of a 
large greenhouse in one day so decisions must be made on which areas would be prioritized. Finally, 
flower viability (e.g., flowers in areas not pollinated during the previous day may need additional 
attention) and growers’ schedule (e.g., blocking off certain rows for other work) need to be considered in 
the planning. Two layers of optimization will be used to solve the pollination route planning problem. In a 
higher layer the complete route, including multiple days if necessary, is calculated before each pollination 
day considering a static average cost to complete each of the tasks. Based on this rough plan, a lower 
layer optimizer then considers higher-fidelity cost estimates, time constraints, and additional 
requirements. The Guided Local Search (Kilby et al., 1999) meta-heuristic will be applied in both layers 
with different sets of constraints. 

With a holonomic drive base, robot motion planning can be modeled as a Partially Observable 
Markov Decision Process (POMDP) on an occupancy grid. The robot maintains an egocentric local 
occupancy grid map that encodes the obstacle probability for each cell (e.g., some plant parts may be 
deformable). With an efficient QMDP planner based on our previous work (Nguyen, 2020), the robot can 
plan a motion toward the goal pose while avoiding obstacles along the way.   

4.4.2. Multi-arm cooperative task and motion planning for efficient pollination 
The task of coordinating six robotic arms may seem daunting at first. Therefore, a key research effort 

here is to find innovative ways of breaking down and simplifying this complex problem to be solvable 
with available tools. The first opportunity of simplification is related to the mostly independent nature of 
the arms’ tasks. For example, each arm would be responsible for either pollinating a different flower, 
moving a cane out of the way, or helping another arm to complete its task by providing a better camera 
viewpoint. The manipulation would also not involve a closed kinematic chain. For example, if a cane 
needs to be moved, pollination actions would be performed only after the crop stops moving. Therefore, 
the multi-arm planning problem can be largely viewed as a heterogeneous multi-agent system problem 
(Schillinger et al., 2018) with collision constraints. 
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Based on the semantic map and the flower poses, each flower will be classified as directly reachable, 
indirectly reachable (i.e., needs the help of cane moving), and not reachable. First, heuristics will be 
developed to assign flowers to the left or right-side arms and the flowers clearly not reachable (e.g., 
facing inward) would be labeled. The reachability of the remaining flowers will be analyzed through 
trajectory planning (Holmes et al., 2020). More specifically, starting from a collision free (for the end 
effector) plan produced with RRT* (Karaman & Frazzoli, 2011), Autonomous Reachability-based 
Manipulator Trajectory Design (ARMTD, Holmes et al., 2020) computes a reachable set of the full arm 
and performs trajectory optimization. The directly reachable flowers are the ones that the planner would 
successfully report a solution while the indirectly reachable flowers are the ones with a cane as the only 
obstacle that could be in collision (contacting with a leaf would be ignored). This trajectory planning 
process will also estimate each flower’s manipulation cost to support task planning later.   

For pollinating directly reachable flowers, the task assignment (e.g., which end effector for which 
flower) will be based on the reachability analysis above with task sequences planned using Planning 
Domain Description Language (PDDL, McDermott et al., 1998). Task planning will consider 
simultaneous pollination actions of multiple arms. Adequate vertical separation between robotics arms 
will also be included as constraints to reduce self-collision. Motion planning will again be performed 
using ARMTD with the consideration of redundant DOF in the end effectors and the sharing of the 
vertical base motion between each pair of left and right arms. Motion planning also facilitates the 
reduction of flower pose estimation uncertainty and ambiguity of the flower association within tight 
clusters; i.e., active perception as discussed earlier in subsection 4.3.3.  

For the indirectly reachable flowers, the pollination planning process is more challenging, as it 
involves the cooperation of multiple manipulators. For example, one arm moves a cane aside, with the 
camera on another arm keeping an eye on the flowers of interest (i.e., viewpoint planning), and a third 
arm then performs the pollination actions. To simplify the problem, we will focus on pollinating one 
flower at a time during this stage. This is an integrated task and motion planning problem with spatial-
temporal constraints. We propose to solve this challenging problem with the following steps. For the 
flower of interest, a reachability analysis (similar to the discussion earlier) is first performed to determine 
which cane needs to be moved. The canes would be modeled as deformable one-dimensional objects 
(Javdani et al., 2011). A clean segment on a cane near the flower of interest is then chosen for grasping 
(Langsfeld et al., 2017). Next, integrated task and motion planning are performed using a sampling-based 
approach (Garrett et al., 2018, 2020). This determines, for example, a new cane pose to be moved to and a 
camera viewpoint for monitoring the process, and plans the manipulator motions to complete these tasks. 
Due to the minimum forces required for flower pollination and cane moving, the manipulator force 
control is not needed in this application. The tactile sensors on the end effectors are used for contact/grasp 
confirmation and the manipulator joint torque feedback are used for anomaly detection (e.g., touching a 
non-deformable object). 

4.5. Human-Robot Collaboration 

A series of human subject experiments will be conducted throughout the project. The main objective 
of these experiments is twofold: 1) exploring the health and safety implications of greenhouse workers 
collaboratively working with the StickBug. Findings will be deployed as design guidelines on our robot 
development to improve the HRI performance; 2) investigating key facilitators and barriers that influence 
professional greenhouse growers from adopting robotics approaches in their tasks. Subsequently, we will 
develop low-barrier smart-phone based user interfaces to improve the usefulness of the HRI information 
presented.    

4.5.1. Hierarchical task analysis for physical and cognitive load evaluation 
We will develop a Hierarchical Task Analysis (HTA) (Stanton, 2006) for the protocols used by the 

greenhouse growers for different routine greenhouse activities without the introduction of the robot (i.e., 
standard operating procedure). In particular, we will investigate how they work with/out bees, and how 
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this human-bee co-populated environment impacts growers’ productivity, situational perception, and 
safety. The HTA will provide a baseline for evaluating cognitive task load of the growers and the overall 
human-robot teaming productivity as a result of deploying the pollination robot.    

There is limited theoretical development on the relationship between greenhouse growers (or a 
broader scope – the agriculture workforce) and robotics adoption, and there is a need for technology 
acceptance studies to investigate further beyond simply describing barriers and facilitators to co-robot 
technologies. Technology Acceptance Model (TAM) and Unified Theory and Acceptance and Use of 
Technology (UTAUT) are two gold standard methods often referred to when investigating technology 
adoption (Davis, 1989; Venkatesh et al., 2003) and will be applied in the study. Focus group interviews 
will be conducted during this task in which 6-8 greenhouse growers will be recruited per round (3-4 
rounds of interviews will be conducted). Participants will be introduced to a variety of greenhouse co-
robot applications (pollinating, pesticide application, etc.) through formal presentations. Participants will 
be asked to rate the technologies on factors such as perceived value to operations, effort to learn and use, 
need for and availability of assistance in occupational safety, and privacy concerns. Subsequently, TAM 
and UTAUT models predict operator attitudes towards robotics technology adoption will be developed in 
terms of the significant factors revealed by the focus group investigation. Outcomes from this research 
activity will also be used to identify the preferable combination of technologies for specific greenhouse 
operation processes, to help lower adoption barriers, and to assist in defining and programing appropriate 
interaction behaviors between human growers and robots. 

4.5.2. Collaborative robotics design evaluation 
Each major pollination robot function module that might influence the surrounding growers’ safety or 

work performance will be evaluated internally by engineers first, then professional growers. The user 
experience for each robotics interface function cluster will be assessed by the Questionnaire for User 
Interaction Satisfaction (QUIS) (Chin et al., 1988). The usability will be assessed using the System 
Usability Scale (Bangor et al., 2008). There will be scenario-based studies designed to evaluate the 
usability, user experience, stress levels, and cognitive task loads associated with different interface 
designs. Co-PI Hu has training and experience in the use of physiological measures in human-systems 
projects (Hu et al., 2016; Hu et al., 2018; Lu et al., 2021). Physiological metrics will be utilized to 
measure stress levels of the greenhouse growers during experiments and training scenarios, and results 
would be summarized as guidelines for the next iteration of design modifications. In addition, subjective 
surveys such as the NASA-TLX survey (Hart et al., 1988), Cognitive Task Load (CTL) method (Choi et 
al., 2014) and cognitive task analysis (Schraagen et al., 2000) will be evaluated.  

The initial phase of this task will be the adaptation and enhancement of existing User Interface (UI) 
developed for robots at WVU. In this project, smartphone based Graphic UIs (Stone et al., 2005) will be 
designed and customized for the general preferences of greenhouse growers and environment contexts 
through an iterative process. Even though more advanced wearable technologies are emerging (e.g., 
Hololens), we decide to pursue a smartphone-based solution due to its low cost and wide adoption, which 
could contribute to lowering the potential users’ entry barrier. This smartphone interface will include 
essential function clusters, including video streaming from the robot, the semantic mapping information, 
planned pollination route, as well as some robot’s key performance indicators (e.g., total number of 
flowers detected, density, percentage pollinated, failure rate, etc.). In addition, the interface would also 
support some user-initiated safety-oriented functions. For example, growers could mark regions that the 
co-robot is denied entering. Human subject experiments will be conducted to determine the usability and 
user experiences at different project checkpoints, along with assessment of cognitive task load and other 
quantifiable human-systems performance measurement such as the task completion time, error rate, and 
near miss count.     

4.5.3. Situation awareness and application safety evaluation 
To evaluate situation awareness, safety, and overall system integration performance, StickBug will be 

tested in a greenhouse environment with participants working in the same space. The robot will work in 
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fully autonomous mode, while the participants will either be equipped with or without the smartphone 
interface. Participants will be assessed using the Quantitative Analog Situation Awareness Global 
Assessment Technique (QASAGAT) (Gatsoulis et al., 2010). Objective measurements will also be 
collected, such as the overall system productivity, human or robotics errors, near misses or robot 
breakdowns. These measurements will be utilized to guide on how to improve the overall HRI, with the 
aim to tax less attentional resources on the grower and to maximize the human-robot system productivity 
when safety requirements are satisfied.    

4.6. System Integration and Anomaly Handling 

Integrating custom robot hardware designs, software modules, algorithms, environment and human 
components, leading to predictable and reliable field performance is a highly challenging problem. 
Building upon past experiences (Gu et al., 2009, 2018a), we will tackle this challenge through a multi-
step approach. First, during the robot design process, as a benefit of creating a custom design, the trade 
between hardware solutions (e.g., designing the robot to reduce/bypass known autonomy challenges) and 
software solutions will be carefully balanced. Mature design elements and software functions that are 
known to integrate well are also leveraged to drive down project risks. Second, the autonomy architecture 
for StickBug will be built upon our proven designs used for planetary rovers (Gu et al., 2018b) and 
BrambleBee (Ohi et al., 2018; Strader et al., 2019). Third, software integration will happen first in a high-
fidelity simulation environment before transitioning to the physical robot, a practice we exercised with 
BrambleBee. Finally, systematic robot testing in realistic environments will be performed. Different 
modes of robot anomaly will be discovered and addressed. This point will be discussed further next. 

A robotic pollinator working in the field can go wrong in many ways. The robot body and its arms 
may be trapped by obstacles (e.g., irrigation lines, canes); the robot may damage delicate plant parts or 
itself; it may also get lost with a diverging localization solution; the computer vision algorithm may fail to 
pick up a large percentage of flowers when the lighting condition changes, or worse, having many false 
positives; the robot may experience hardware failures, or running out of power before returning to the 
charging station. It should be reminded that these are only the fault cases that we can anticipate, which 
would account for a small portion of the potential failure space. Fundamentally improving a robot's ability 
to stay productive for long-term, under varying, including unexpected situations, is a long-term research 
endeavor by the robotics community (Christensen et al., 2020). However, before the “long tail” problem 
is solved, we can still develop productive robot systems, leveraging nearby humans’ help occasionally. 
Many abnormal conditions beyond the capacity of robots to reason and address can easily be handled by 
human workers. To enable this human-robot collaboration, we will develop tools for online self-diagnosis 
and anomaly detection, risk assessment and prediction, and deciding on which fault mode can be handled 
by StickBug itself and when to give up and ask for help. We will also develop flexible modes of manual 
override (e.g., untangle from a cane) with low technological barriers (e.g., powering off the arms so they 
can be moved by hand).   

5. Risk & Mitigation 
The use of a holonomic drivetrain simplifies the robot planning and control in tight spaces. For flower 

pose estimation, we expect it to be less reliable using only RGB cameras, and given the natural 
symmetries of flowers, there are potentials for ambiguities. If the proposed active perception approach 
does not work as expected, we would fall back to use RGB-D sensors for the end effectors as on 
BrambleBee (Strader et al., 2019). The highest risk of the project is anticipated to be the coordinated 
branch moving and pollination for indirectly reachable flowers. If the proposed method is shown to be 
unreliable, we would significantly slow down the branch moving motion (to help with flower tracking) 
with multiple stops along the way to allow better flower association and more chances for the planner to 
find a feasible pollination trajectory. The reduction of the system integration risk was discussed earlier in 
Section 4.6. 
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Several robotic pollination related challenges will not be fully addressed during this project. This 
includes adapting to more crop/flower types (each would need specialized horticulture study and end-
effector design customization), achieving insect-level pollination rate (bees can visit much harder to reach 
flowers), and long-term autonomy without human supervision.  

6. Evaluation 
Evaluation of the StickBug’s pollination effectiveness will be performed in the WVU Evansdale 

Greenhouse using two crops: blackberries and tomatoes. Plants will be grown at 25/22 °C (day/night) 
with ambient light. Four methods of pollination will be used: pollination by bumblebees (Bombus spp.), 
by human hand (manual pollination), by the robot, and no pollination control. Plants will be pollinated at 
the anthesis (flower opening) in the same room for each species. There will be a minimum of four plants 
per treatment (n = 4). For manual pollination, pollen will be transferred from anthers onto stigmas by 
hand with a small brush for blackberries, while a vibration tool will be used for tomato pollination. 
Nettings will be installed in bee pollination areas to prevent cross-pollination from other pollination areas. 
Although pollination by hand and the robot will be performed with extreme caution, occasional self-
pollination is expected to occur. No pollination control allows only natural pollination in the greenhouse 
and provides a baseline for evaluating pollination effectiveness. The effectiveness of pollination will be 
evaluated by determining the fruit yield per plant, fruit size, fruit weight, harvest time, the overall 
distribution of fruit on a plant, pollination speed of each method (flowers per day), and percentage of the 
pollinated flowers. Also, the cost of bee pollination will be compared to the cost of robotic pollination, 
including the growers’ labor costs for supporting both methods. Additionally, the robot reliability will be 
evaluated for the mean time between human interventions (Gu et al., 2018b).  

The human-robot system performance will be evaluated at both the WVU Greenhouse and a 
commercial greenhouse (Gritt’s Midway Greenhouse, Red House, WV). Gritt’s greenhouse has 1.5 acres 
of hydroponic tomato production. The researchers will conduct observations of eight expert greenhouse 
growers performing the same tasks, as in Section 4.5, during actual operations while using the robot 
pollinator. As in the previous phase, we will conduct an HTA, retrospective think-aloud protocol (Van 
Den Haak et al., 2003) to quantify the impact of the proposed intervention on growers’ workload in 
performing different greenhouse routine operations. The dependent variables will include growers’ 
cognitive and physical load measured by wearable devices (described in Section 4.5), errors of 
commission and omission and hazard perception, and perceived situation awareness. Each scenario will 
last 10-20 minutes and the total time for each participant will be less than 2 hours to avoid fatigue. Ample 
rest will be provided between each trial. ANOVA models (Tabachnick & Fidell, 2007) will be 
constructed to test the effect of the experimental manipulations on different response measures. In 
addition, subjective perceived safety, physical work strain index surveys will be administered to 
investigate grower’s satisfaction and perceived safety during the experiment (Hart et al., 1988; Moore et 
al., 1995; Lasota et al., 2015).  

Expected Outcomes and Metrics for Success: the targeted pollination speed for StickBug is 3,600 
flowers per day (i.e., average one flower per minute for each of the five pollination end effectors and 12-
hour effective work time per day) and the target percentage of the pollinated flowers is 85%.  

7. Intellectual Merit   
The intellectual merits of this proposed project are twofold. First, the project integrates agriculture 

domain knowledge, custom robot design, robotics algorithms, and human systems methods to solve a 
complex real-world challenge. The complexity of the problem being tackled, i.e., large-scale manipulation 
of delicate flowers in diverse situations, is beyond most of the field robots in the past. Knowledge and 
insights gained through this adventure would advance robotics research in areas such as semantic 
mapping in dynamic environments, manipulation of deformable objects under occlusions, multi-arm task 
coordination, and tracking similar-looking objects under motions. More importantly, the emphasis on 
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field testing and comprehensive evaluation of pollinator effectiveness will help close the gap between 
academic robotics research and the needs in real-world applications.  

Second, a multifaceted approach is used in this project to lower the entry barriers of robotic 
pollinators. The choices of low-cost hardware reduced the overall system cost, but at the same time 
introduced additional uncertainties that need to be addressed with algorithms. The research in this area 
would help popularize low-cost robot’s use in different applications. In addition, the integration of human 
studies in the robot design and evaluation process would help to make the robotic pollination technology 
acceptable to growers without specialized training. Finally, the open sharing of the pollinator robot 
design, algorithms, and simulators would promote community collaboration and attract more researchers 
to innovate in this domain. 

8. Broader Impacts 
8.1. Impact on Agriculture and the Society 

About 80% of all flowering plants require assistance from animals for pollination (USDA Forest 
Service, 2014) and, without pollinators, many crops cannot propagate (American Bee Keeping 
Federation, 2014). With the aid of robotic pollinators, growers can overcome the shortage of pollinators 
and obtain higher profit opportunities by planning flexible pollination schedules independent from the 
activity of pollinators, producing fruit during early and late season when premium prices are paid for their 
crops. Pollination robots can also allow for selective pollination and better management of crops by 
timing and tracking pollinated flowers. With a growing population, increased life expectancy, and limited 
arable land on Earth, food security has long been recognized as a critical issue. Although the proposed 
experiments will only be focused on pollination, the developed technology of precision manipulation of 
delicate plant parts can be further adapted for many other agriculture applications.  

8.2. Impact on Education, Outreach, and Workforce Development 

Robots, bees, and flowers – this combination of words captures many people’s interest and 
imagination, regardless of their ages. Our multidisciplinary research effort will be tightly integrated with 
education and outreach activities. For K-12 students, we will explore mixed in-person demonstrations 
combined with online strategies. Before the COVID-19 pandemic, we have been involved in over a dozen 

outreach activities each year (e.g., Fig. 6) at different 
schools, state fairs, and science-themed activities. During 
the pandemic, we have explored alternative ways of 
reaching out to students. For example, the PI, Gu, recently 
talked to several dozen elementary-aged girls about “Bees 
and BrambleBee” during WVU’s Girls’ STEM week. Co-
PI Gross is on the organizing committee for the WVU 
Nursery School STEAMPosium that will educate Pre-K to 
3rd grade teachers on STEAM educational activities. 
During this project, we will develop interactive robotic 
pollination demonstrations with StickBug and an artificial 
plant that can both be hosted in person and be commanded 
online (e.g., which flowers to pollinate next?). 

For undergraduate students, the StickBug robot design and field-testing components can provide 
numerous research and learning opportunities. The PI and co-PIs typically have about ten undergraduates 
working in their labs, supported through different mechanisms (e.g., project funds, NASA prize funds, 
fellowships, research credits, etc.). PI Gu also sustained a pipeline of undergraduate researchers through 
advising the WVU Robotic Club, with over 65 members, and the University Rover Challenge (URC) 
team, with about 30 students. The URC team’s manipulator designs are incorporated in the proposed 
StickBug robot, an example that would show students the potential impact of undergraduate research.  

 
Fig. 6. WVU Cataglyphis rover showing off its 

water bottle picking skills to K-2 students. 
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Specific programs will also be developed to integrate the engineering and skilled labor training 
domains so that future technician training keeps track with the rapidly advancing use of robotics. For 
instance, hands-on training modules will be developed to train growers on how to work safely and 
effectively with co-robots in the same space, educate them with the robot’s passive and active safety 
mechanisms. We aim to cultivate strong support for professional greenhouse growers through an active 
learning (Felder & Brent, 2009) approach (peer co-workers, near-peer mentors, and technical supports), 
and to lower the barrier of wider adoption. We will assess the success of the workforce development 
effort through two mechanisms (Frechtling, 2002), 1) formative evaluation: this will be done by working 
with our industry partners to provide relevant and substantive feedback to the professional outreach and 
workforce development work; 2) summative evaluation. This will be supervised by our collaborators from 
the UF College of Education, with data collection and analysis conducted to help understand the 
effectiveness of the program. 

8.3. Broaden Participation of Underrepresented Groups in STEM Education and Research 

Research has shown that multidisciplinary programs are often more appealing to a diverse audience 
(Ouellett, 2005). We will use this project as an opportunity to develop cross-disciplinary curriculum 
material (for enhancing existing courses) and a series of short educational YouTube videos with emphasis 
on integrating science and engineering knowledge to tackle real-world challenges (Teppo & Rannikmäe, 
2003; Gedrovics, 2006; Machina & Gokhale, 2010). Additionally, the agricultural focus of this project 
naturally allows us to connect to students from rural regions. Leveraging our NSF-funded robotics REU 
Site, which led to the creation of a recruiting network of institutions in the Appalachian region, we will 
continue to encourage students from socio-economically disadvantaged backgrounds and other 
underrepresented groups to participate in the project.   

8.4. Dissemination of Research Findings 

Several channels will be exploited to facilitate knowledge sharing and collaborations. As mentioned 
earlier, we will conduct the project in an open-access fashion (more details in the Data Management 
Plan). Videos of representative robot experiments will also be shared on YouTube channels to improve 
the visibility of this project. During our previous pollination project, these videos had been proven to be 
of high visibility, with media requests after the release of each new video. Some of the media stories have 
generated several hundred thousand views on social media, indicating a strong public interest in this 
topic. Our recent media dialogs (e.g., with CNN, AAAS Science) focused on explaining the need for 
developing backup pollination solutions in the context of bee shortage and the limitations of the current 
technology. We expect to continue to capture the public imagination with the six-armed StickBug robot 
and will use this opportunity to better inform the public about the state of pollinators and robotics. 

9. Results from Prior NSF Support 
Gu/Gross: (a) NSF # 1851815, 03/2019 – 02/2022, $303,310. (b) REU Site on Human-Swarm 

Interaction. (c) Intellectual Merit: allow one human operator to effectively manage a large robot swarm to 
achieve desired global objectives, such as search and rescue. (d) Broader Impact: the REU site creates 
research and learning opportunities for a diverse group of students mainly from socio-economically 
disadvantaged areas (e.g., five of eight students in the 2019 program were from Appalachia, five were 
from primarily undergraduate institutions, three were female). (e) Publication: (Dhanaraj et al., 2019). 

Hu (Co-PI): (a) NSF # 2026276, 10/2020 – 09/2024, $1,514,197. (b) FW-HTF-RL: Collaborative 
Research: The Future of Remanufacturing: Human-Robot Collaboration for Disassembly of End-of-Use 
Products. (c) Intellectual Merit: advance an integrated framework that utilizes the capabilities of both 
humans and robots in a safe, complementary, and interactive manner, towards designing an economically 
viable disassembly system for the remanufacturing industry. (d) Broader Impact: the research will allow 
iteratively adjusted and enhanced collaborative disassembly systems to be implemented in future 
remanufacturing factories. (e) Publication: N/A. 

2132804



1 
 

References 
Acquaah, G. (2008). Horticulture: Principles and Practices (4th ed). Prentice Hall. 

Adamides, G., Katsanos, C., Constantinou, I., Christou, G., Xenos, M., Hadzilacos, T., & Edan, Y. 
(2017a). Design and development of a semi‐autonomous agricultural vineyard sprayer: Human–robot 
interaction aspects. Journal of Field Robotics, 34(8), 1407-1426. 

Adamides, G., Katsanos, C., Parmet, Y., Christou, G., Xenos, M., Hadzilacos, T., & Edan, Y. (2017b). 
HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Applied 
ergonomics, 62, 237-246. 

Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward 
precision agriculture technologies. Computers and electronics in agriculture, 48(3), 256-271. 

Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new 
information technologies?. Decision sciences, 30(2), 361-391. 

American Bee Keeping Federation. (2014). 2014 Pollination Facts. URL: 
http://www.abfnet.org/?page=14 

Arab, L., & Steck, S. (2000). Lycopene and cardiovascular disease. Am. J. Clin. Nutr. 71(suppl):1691S–
5S. 

Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical 
analysis of farmers' adoption decision of precision agriculture technology. Decision support systems, 
54(1), 510-520. 

Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high‐value crops: 
State‐of‐the‐art review and challenges ahead. Journal of Field Robotics, 31(6), 888-911. 

Bandura, A. (1989). Human agency in social cognitive theory. American psychologist, 44(9), 1175. 

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. 
Intl. Journal of Human–Computer Interaction, 24(6), 574-594. 

Batte, M. T., & Arnholt, M. W. (2003). Precision farming adoption and use in Ohio: case studies of six 
leading-edge adopters. Computers and electronics in agriculture, 38(2), 125-139 

Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. 
Biosystems Engineering, 149, 94-111. 

Bengochea-Guevara, J. M., Conesa-Muńoz, J., & Ribeiro, Á. (2014). Generating autonomous behaviour 
for a crop inspection robot. In ROBOT2013: First Iberian Robotics Conference (pp. 481-493). 
Springer, Cham. 

Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-
environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13-26. 

Benos, L., Bechar, A., & Bochtis, D. (2020). Safety and ergonomics in human-robot interactive 
agricultural operations. Biosystems Engineering, 200, 55-72. 

Bergerman, M., Maeta, S. M., Zhang, J., Freitas, G. M., Hamner, B., Singh, S., & Kantor, G. (2015). 
Robot farmers: Autonomous orchard vehicles help tree fruit production. IEEE Robotics & 
Automation Magazine, 22(1), 54-63. 

Berman, S., Kumar, V., & Nagpal, R. (2011). Design of control policies for spatially inhomogeneous 
robot swarms with application to commercial pollination. In Robotics and Automation (ICRA), 2011 
IEEE International Conference on (pp. 378-385). IEEE. 

2132804



2 
 

Bhowmik, D. Sampath Kumar, K.P., Paswan, S., & Srivastava S. (2012). Tomato-A natural medicine and 
its health benefits. J. of Pharmacognosy and Phytochemistry 1(1):33-43 

Billings, G., & Johnson-Roberson, M. (2019). Silhonet: An RGB method for 6d object pose estimation. 
IEEE Robotics and Automation Letters, 4(4), 3727-3734. 

Binns, C. (2009). Robotic Insects Could Pollinate Flowers and Find Disaster Victims, Popular Science. 

Biobest (2021). URL: https://www.biobestgroup.com/en/biobest/products/bumblebee-pollination-
4460/bumblebee-hives-6329/medium-hive-%28b-t-%29-4608/ 

Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., & Siegwart, R. (2016). Receding horizon "next-best-
view" planner for 3d exploration. In 2016 IEEE international conference on robotics and automation 
(ICRA) (pp. 1462-1468). IEEE. 

Blackmore, B. S. (2004). From precision farming to phytotechnology. In Automation Technology for 
Off-Road Equipment Proceedings of the 2004 Conference (p. 162). American Society of Agricultural 
and Biological Engineers. 

Bloch, V., Degani, A., & Bechar, A. (2018). A methodology of orchard architecture design for an optimal 
harvesting robot. Biosystems Engineering, 166, 126-137. 

Bonanni, T. M., Della Corte, B., & Grisetti, G. (2017). 3D map merging on pose graphs. IEEE Robotics 
and Automation Letters, 2(2), 1031-1038. 

Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., Mills, S., Chen, X., & Corbett‐
Davies, S. (2017). A robot system for pruning grape vines. Journal of Field Robotics, 34(6), 1100-
1122. 

Buchmann, S. L., & Nabhan, G. P. (2012). The forgotten pollinators. Island Press. 

Charles, R. L., & Nixon, J. (2019). Measuring mental workload using physiological measures: A 
systematic review. Applied ergonomics, 74, 221-232. 

Chaudhary, P., Sharma, A., Singh, B., and Nagpal, A.K. (2018). Bioactivities of phytochemicals present 
in tomato. J. Food Sci. Technol 55(8):2833-2849. 

Chebrolu, N., Läbe, T., & Stachniss, C. (2020). Spatio-temporal non-rigid registration of 3d point clouds 
of plants. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3112-
3118). IEEE. 

Choi, H. H., Van Merriënboer, J. J., & Paas, F. (2014). Effects of the physical environment on cognitive 
load and learning: Towards a new model of cognitive load. Educational Psychology Review, 26(2), 
225-244. 

Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user 
satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference on Human 
factors in computing systems (pp. 213-218). 

Christensen, H. et al., (2020). A Roadmap for US Robotics: from Internet to Robotics, 2020 Edition. 

Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and 
biodiversity protection. Science, 356(6335), 260-264. 

Cordeau, J. F., & Groupe d'études et de recherche en analyse des décisions (Montréal, Québec). (2000). 
The VRP with time windows. Montréal: Groupe d'études et de recherche en analyse des décisions. 

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information 
technology. MIS quarterly, 319-340. 

2132804



3 
 

De-An, Z., Jidong, L., Wei, J., Ying, Z., & Yu, C. (2011). Design and control of an apple harvesting 
robot. Biosystems engineering, 110(2), 112-122. 

Dhanaraj, N., Hewitt, N., Edmonds-Estes, C., Jarman, R., Seo, J., Gunner, H., Hatfield, A., Johnson, T., 
Yifru, L., Maffeo, J., Pereira, G., Gross, J., & Gu, Y. (2019). Adaptable platform for interactive 
swarm robotics (apis): a human-swarm interaction research testbed. In 2019 19th International 
Conference on Advanced Robotics (ICAR) (pp. 720-726). IEEE. 

Dimara, E., & Skuras, D. (2003). Adoption of agricultural innovations as a two‐stage partial observability 
process. Agricultural Economics, 28(3), 187-196. 

Dimara, E., & Skuras, D. (2003). Adoption of agricultural innovations as a two‐stage partial observability 
process. Agricultural Economics, 28(3), 187-196. 

Ellis, K., Baugher, T. A., & Lewis, K. (2010). Results from survey instruments used to assess technology 
adoption for tree fruit production. HortTechnology, 20(6), 1043-1048. 

FAO (Food and Agriculture Organization of the United Nations), (2016), Pollinators vital to our food 
supply under threat. 

Felder, R. M., & Brent, R. (2009). Active learning: An introduction. ASQ higher education brief, 2(4), 1-
5. 

Folorunso, O., & Ogunseye, S. O. (2008). Applying an enhanced technology acceptance model to 
knowledge management in agricultural extension services. Data Science Journal, 7, 31-45. 

Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., & Sorensen, C. 
G. (2005). Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. 
Precision Agriculture, 6(2), 121-141. 

Frechtling, J. (2002). The 2002 User-Friendly Handbook for Project Evaluation. ERIC. 

Folorunso, O., & Ogunseye, S. O. (2008). Applying an enhanced technology acceptance model to 
knowledge management in agricultural extension services. Data Science Journal, 7, 31-45. 

Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2018). Sampling-based methods for factored task 
and motion planning. The International Journal of Robotics Research, 37(13-14), 1796-1825. 

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L. P., & Lozano-Pérez, T. (2020). 
Integrated task and motion planning. arXiv preprint arXiv:2010.01083. 

Gatsoulis, Y., Virk, G. S., & Dehghani-Sanij, A. A. (2010). On the measurement of situation awareness 
for effective human-robot interaction in teleoperated systems. Journal of cognitive engineering and 
decision making, 4(1), 69-98. 

Gedrovics, J. (2006). Regional and group differences in the framework of international comparative 
Project ROSE in Latvia. Journal of Baltic Science Education, 1(9), 74-85. 

Goff, P. personal communication, April 20th, 2021. 

Goodrich, M. A., & Schultz, A. C. (2008). Human-robot interaction: a survey. Now Publishers Inc. 

Gray, R., (2019). Why soil is disappearing from farms, BBC.  

Gu, Y., Campa, G., Seanor, B., Gururajan, S., & Napolitano, M. R. (2009). Autonomous formation flight–
design and experiments. Aerial vehicles, 12, 233-256. 

Gu, Y., Ohi, N., Lassak, K., Strader, J., Kogan, L., Hypes, A., Hu, B., Gramlich, M., Kavi, R., Watson, 
R., & Gross, J. (2018a). Cataglyphis: An autonomous sample return rover. Journal of Field Robotics, 
35(2), 248-274. 

2132804



4 
 

Gu, Y., Strader, J., Ohi, N., Harper, S., Lassak, K., Yang, C., Kogan, L., Hu, B., Gramlich, M., Kavi, R., 
& Gross, J. (2018b). Robot foraging: autonomous sample return in a large outdoor environment. 
IEEE Robotics & Automation Magazine, 25(3), 93-101. 

Hajjaj, S. S. H., & Sahari, K. S. M. (2014). Review of research in the area of agriculture mobile robots. In 
The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications (pp. 
107-117). Springer, Singapore. 

Hajjaj, S. S. H., & Sahari, K. S. M. (2016). Review of agriculture robotics: Practicality and feasibility. In 
2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) (pp. 194-198). IEEE. 

Harackiewicz, J. M., Smith, J. L., & Priniski, S. J. (2016). Interest matters: The importance of promoting 
interest in education. Policy insights from the behavioral and brain sciences, 3(2), 220-227. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of 
empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). North-Holland. 

He, L., & Schupp, J. (2018). Sensing and automation in pruning of apple trees: A review. Agronomy, 
8(10), 211. 

Hite, D., Hudson, D., & Intarapapong, W. (2002). Willingness to pay for water quality improvements: 
The case of precision application technology. Journal of Agricultural and resource Economics, 433-
449. 

Holmes, P., Kousik, S., Zhang, B., Raz, D., Barbalata, C., Johnson-Roberson, M., & Vasudevan, R. 
(2020). Reachable sets for safe, real-time manipulator trajectory design. arXiv preprint 
arXiv:2002.01591. 

Hu, B., & Ning, X. (2016). Cervical spine biomechanics and task performance during touchscreen 
computer operations. International Journal of Industrial Ergonomics, 56, 41-50. 

Hu, B., Dixon, P. C., Jacobs, J. V., Dennerlein, J. T., & Schiffman, J. M. (2018). Machine learning 
algorithms based on signals from a single wearable inertial sensor can detect surface-and age-related 
differences in walking. Journal of biomechanics, 71, 37-42. 

Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., & Chen, B. (2013). L1-medial skeleton of 
point cloud. ACM Trans. Graph., 32(4), 65-1. 

Hummer, K. E. (2010). Rubus pharmacology: Antiquity to the present. HortScience 45(11), 1587-1591. 

Javdani, S., Tandon, S., Tang, J., O'Brien, J. F., & Abbeel, P. (2011). Modeling and perception of 
deformable one-dimensional objects. In 2011 IEEE International Conference on Robotics and 
Automation (pp. 1607-1614). IEEE. 

Johnson, R. R. (1998). User-centered technology: A rhetorical theory for computers and other mundane 
artifacts. SUNY press. 

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The 
international journal of robotics research, 30(7), 846-894. 

Kashiwazaki, K., Sugahara, Y., Iwasaki, J., Kosuge, K., Kumazawa, S., & Yamashita, T. (2010). 
Greenhouse partner robot system. In ISR 2010 (41st International Symposium on Robotics) and 
ROBOTIK 2010 (6th German Conference on Robotics) (pp. 1-8). VDE. 

Kilby, P., Prosser, P., & Shaw, P. (1999). Guided local search for the vehicle routing problem with time 
windows. In Meta-heuristics (pp. 473-486). Springer, Boston, MA. 

Kilic, C., Ohi, N., Gu, Y., & Gross, J. (2021). Slip-Based Autonomous ZUPT through Gaussian Process 
to Improve Planetary Rover Localization. IEEE Robotics and Automation Letters. 

2132804



5 
 

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & 
Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings 
of the royal society B: biological sciences, 274(1608), 303-313. 

Langsfeld, J. D., Kabir, A. M., Kaipa, K. N., & Gupta, S. K. (2017). Integration of planning and 
deformation model estimation for robotic cleaning of elastically deformable objects. IEEE Robotics 
and Automation Letters, 3(1), 352-359. 

Lasota, P. A., & Shah, J. A. (2015). Analyzing the effects of human-aware motion planning on close-
proximity human–robot collaboration. Human factors, 57(1), 21-33. 

Lee, H., Sumner, D. A., & Champetier, A. (2019). Pollination markets and the coupled futures of almonds 
and honey bees: simulating impacts of shifts in demands and costs. American Journal of Agricultural 
Economics, 101(1), 230-249. 

Li, J., Karkee, M., Zhang, Q., Xiao, K., & Feng, T. (2016). Characterizing apple picking patterns for 
robotic harvesting. Computers and Electronics in Agriculture, 127, 633-640. 

Li, P., Liu, Z., & Huang, D. (2019). 3D Map Merging Based on Overlapping Region. In 2019 3rd 
International Conference on Electronic Information Technology and Computer Engineering (EITCE) 
(pp. 1133-1137). IEEE. 

Lu, R., Zhang, Z., & Pothula, A. K. (2017). Innovative technology for apple harvest and in-field sorting. 
Fruit Qtly, 25(2), 11-14. 

Lu, X., Luo, Y., Hu, B., Park, N. K., & Ahrentzen, S. (2021). Testing of path-based visual cues on 
patterned carpet to assist older adults' gait in a continuing care retirement community. Experimental 
Gerontology, 111307. 

Machina, K., & Gokhale, A. (2010). Maintaining positive attitudes toward science and technology in first‐
year female undergraduates: Peril and promise. International Journal of Science Education, 32(4), 
523-540. 

Marra, M. C., Rejesus, R. M., Roberts, R. K., English, B. C., Larson, J. A., Larkin, S. L., & Martin, S. 
(2010). Estimating the demand and willingness-to-pay for cotton yield monitors. Precision 
agriculture, 11(3), 215-238. 

McDermott D, GhallabM, Howe A, et al., (1998). PDDL—the planning domain definition language. 
Available: http://www.cs.yale.edu/homes/dvm/ 

Mills, S. A., Gu, Y., Gross, J., Li, X., Park, Y. L., & Waterland, N. L. (2020). Evaluation of an 
Autonomous Robotic Pollinator. In 2020 ASHS Annual Conference. ASHS. 

Möller, N., & Hansson, S. O. (2008). Principles of engineering safety: Risk and uncertainty reduction. 
Reliability Engineering & System Safety, 93(6), 798-805. 

Mueller-Sim, T., Jenkins, M., Abel, J., & Kantor, G. (2017). The Robotanist: a ground-based agricultural 
robot for high-throughput crop phenotyping. In 2017 IEEE International Conference on Robotics and 
Automation (ICRA) (pp. 3634-3639). IEEE. 

Newcombe, R. A., Fox, D., & Seitz, S. M. (2015). Dynamicfusion: Reconstruction and tracking of non-
rigid scenes in real-time. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 343-352). 

Nguyen, J. Q. (2020). Navigation under Obstacle Motion Uncertainty using Markov Decision Processes. 
WVU M.S. thesis.  

North American Raspberry and Blackberry Association. (2021). URL:   
http://www.raspberryblackberry.com/local.cfm?doc=webdocs%2Fhealthbasics.htm 

2132804



6 
 

Ohi, N., Lassak, K., Watson, R., Strader, J., Du, Y., Yang, C., Hedrick, G., Nguyen, J., Harper, S., 
Reynolds, D., Kilic, C., Hikes, J., Mills, S., Castle, C., Buzzo, B., Waterland, N., Gross, J., Park, 
Y.L., Li, X., & Gu, Y. (2018). Design of an autonomous precision pollination robot. In 2018 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7711-7718). 
IEEE. 

Oren, Y., Bechar, A., Joachim, M., & Edan, Y. (2008). Performance analysis of human-robot 
collaboration in target recognition tasks. Ben-Gurion University of the Negev. 

Ouellett, M. L. (2005). Teaching Inclusively: Resources for Course, Department & Institutional Change 
in Higher Education (New Forums Faculty Development). 

Park, Y. L. (2017). Pollinator robot inspired by structure and behavior of Osmia bees. In Entomology 
2017. ESA. 

Pan, X., Luo, Z., & Liu, Y. (2016). Environmental deterioration of farmlands caused by the irrational use 
of agricultural technologies. Frontiers of Environmental Science & Engineering, 10(4), 1-3. 

Parry, M. L. (2019). Climate change and world agriculture. Routledge. 

Petrovic, K. (2017). Using bees in the greenhouse for natural pollination. Greenhouse Grower. URL: 
https://www.greenhousegrower.com/production/using-bees-in-the-greenhouse-for-natural-pollination/ 

Pierce, F. J., & Elliott, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural 
systems in Eastern Washington. Computers and electronics in agriculture, 61(1), 32-43. 

Potts, S. G., Ngo, H. T., Biesmeijer, J. C., Breeze, T. D., Dicks, L. V., Garibaldi, L. A., Hill, R., Settele, 
J., & Vanbergen, A. (2016). The assessment report of the Intergovernmental Science-Policy Platform 
on Biodiversity and Ecosystem Services on pollinators, pollination and food production.  

Reina, G., Milella, A., Rouveure, R., Nielsen, M., Worst, R., & Blas, M. R. (2016). Ambient awareness 
for agricultural robotic vehicles. biosystems engineering, 146, 114-132. 

Robertson, T., & Simonsen, J. (2012). Participatory design. Routledge international handbook of 
participatory design, 1. 

Rosinol, A., Gupta, A., Abate, M., Shi, J., & Carlone, L. (2020a). 3D dynamic scene graphs: Actionable 
spatial perception with places, objects, and humans. arXiv preprint arXiv:2002.06289. 

Rosinol, A., Abate, M., Chang, Y., & Carlone, L. (2020b). Kimera: an open-source library for real-time 
metric-semantic localization and mapping. In 2020 IEEE International Conference on Robotics and 
Automation (ICRA) (pp. 1689-1696). IEEE. 

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection 
system using deep neural networks. sensors, 16(8), 1222. 

Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2018). Simultaneous task allocation and planning for 
temporal logic goals in heterogeneous multi-robot systems. The international journal of robotics 
research, 37(7), 818-838. 

Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (Eds.). (2000). Cognitive task analysis. Psychology 
Press. 

Scona, R., Jaimez, M., Petillot, Y. R., Fallon, M., & Cremers, D. (2018). Staticfusion: Background 
reconstruction for dense rgb-d slam in dynamic environments. In 2018 IEEE International Conference 
on Robotics and Automation (ICRA) (pp. 3849-3856). IEEE. 

SepúLveda, D., Fernández, R., Navas, E., Armada, M., & González-De-Santos, P. (2020). Robotic 
Aubergine Harvesting Using Dual-Arm Manipulation. IEEE Access, 8, 121889-121904. 

2132804



7 
 

Shaneyfelt, T., Jamshidi, M. M., & Agaian, S. (2013). A vision feedback robotic docking crane system 
with application to vanilla pollination. International Journal of Automation and Control, 7(1-2), 62-
82. 

Shivaprasad, B. S., Ravishankara, M. N., & Shoba, B. N. (2014). Design and implementation of seeding 
and fertilizing agriculture robot. International Journal of Application or Innovation in Engineering & 
Management (IJAIEM), 3(6), 251-255. 

Silwal, A., Davidson, J. R., Karkee, M., Mo, C., Zhang, Q., & Lewis, K. (2017). Design, integration, and 
field evaluation of a robotic apple harvester. Journal of Field Robotics, 34(6), 1140-1159. 

Spinuzzi, C. (2005). The methodology of participatory design. Technical communication, 52(2), 163-174. 

Srinivasan, N., Prabhu, P., Smruthi, S. S., Sivaraman, N. V., Gladwin, S. J., Rajavel, R., & Natarajan, A. 
R. (2016, December). Design of an autonomous seed planting robot. In 2016 IEEE Region 10 
Humanitarian Technology Conference (R10-HTC) (pp. 1-4). IEEE. 

Stanton, N. A. (2006). Hierarchical task analysis: Developments, applications, and extensions. Applied 
ergonomics, 37(1), 55-79. 

Steven Moore, J., & Garg, A. (1995). The strain index: a proposed method to analyze jobs for risk of 
distal upper extremity disorders. American Industrial Hygiene Association Journal, 56(5), 443-458. 

Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User interface design and evaluation. 
Elsevier. 

Strader, J., Nguyen, J., Tatsch, C., Du, Y., Lassak, K., Buzzo, B., Watson R., Cerbone, H., Ohi, N., Yang, 
C., & Gu, Y. (2019). Flower Interaction Subsystem for a Precision Pollination Robot. IROS 2019. 

Sumner, D. A., & Boriss, H. (2006). Bee-conomics and the leap in pollination fees. Agricultural and 
Resource Economics Update, 9(3), 9-11. 

Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA (p. 724). Belmont, CA: 
Thomson/Brooks/Cole. 

Tatsch, C. A. (2020). Route Planning for Long-Term Robotics Missions. WVU M.S. thesis.  

Teppo, M., & Rannikmäe, M. (2003). Increasing the relevance of science education–student preferences 
for different types of teaching scenarios. Journal of Baltic Science Education, 2(4), 49-61. 

Thayer, T. C., Vougioukas, S., Goldberg, K., & Carpin, S. (2018). Routing algorithms for robot assisted 
precision irrigation. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 
2221-2228). IEEE. 

USDA Forest Service. (2014). Plant pollination strategies. URL: 
http://www.fs.fed.us/wildflowers/pollinators/Plant_Strategies/index.shtml 

USDA National Agricultural Statistics Service. (2018). Noncitrus Fruits and Nuts 2017 Summary. URL: 
https://downloads.usda.library.cornell.edu/usda-
esmis/files/zs25x846c/bc386n064/rr172065h/NoncFruiNu-06-26-2018.pdf 

USDA National Agricultural Statistics Service. (2021). Vegetable 2020 Summary. URL: 
https://downloads.usda.library.cornell.edu/usda-
esmis/files/02870v86p/j6731x86f/9306tr664/vegean21.pdf 

Van Den Haak, M., De Jong, M., & Jan Schellens, P. (2003). Retrospective vs. concurrent think-aloud 
protocols: testing the usability of an online library catalogue. Behaviour & information technology, 
22(5), 339-351. 

van Omme, N., Perron, L., & Furnon, V., (2014). OR-tools user's manual, Tech. rep., Google. 

2132804



8 
 

Vasconez, J. P., Kantor, G. A., & Cheein, F. A. A. (2019). Human–robot interaction in agriculture: A 
survey and current challenges. Biosystems engineering, 179, 35-48. 

Vázquez-Arellano, M., Griepentrog, H. W., Reiser, D., & Paraforos, D. S. (2016). 3-D imaging systems 
for agricultural applications—a review. Sensors, 16(5), 618. 

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information 
technology: Toward a unified view. MIS quarterly, 425-478. 

Vougioukas, S. G. (2019). Agricultural robotics. Annual Review of Control, Robotics, and Autonomous 
Systems, 2, 365-392. 

Whittington, R., Winston,M.L., Tucker, C., and Parachnowitsch, A.L. (2004). Plant-species identity of 
pollen collected by bumblebees placed in greenhouses for tomato pollination. Canadian Journal of 
Plant Science 84(2):599-602. 

Williams, H., Nejati, M., Hussein, S., Penhall, N., Lim, J. Y., Jones, M. H., Bell, J., Ahn, H.S., Bradley, 
S., Schaare, P., & MacDonald, B. (2020). Autonomous pollination of individual kiwifruit flowers: 
Toward a robotic kiwifruit pollinator. Journal of Field Robotics, 37(2), 246-262. 

Wood, R et. al. (2009). Robobees Project. URL: http://robobees.seas.harvard.edu/, since 2009. 

WVU Robotics (2021). Robotic pollination simulator. URL: https://github.com/wvu-robotics/workspace-
pollination-sim. 

Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2017). Posecnn: A convolutional neural network for 
6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199. 

Xiong, Y., Ge, Y., Grimstad, L., & From, P. J. (2020). An autonomous strawberry‐harvesting robot: 
Design, development, integration, and field evaluation. Journal of Field Robotics, 37(2), 202-224. 

Yaghoubi, S., Akbarzadeh, N. A., Bazargani, S. S., Bazargani, S. S., Bamizan, M., & Asl, M. I. (2013). 
Autonomous robots for agricultural tasks and farm assignment and future trends in agro robots. 
International Journal of Mechanical and Mechatronics Engineering, 13(3), 1-6. 

Yang, C., Watson, R. M., Gross, J. N., & Gu, Y. (2019). Localization Algorithm Design and Evaluation 
for an Autonomous Pollination Robot. In Proceedings of the 32nd International Technical Meeting of 
the Satellite Division of The Institute of Navigation (ION GNSS+ 2019) (pp. 2702-2710). 

Yang, X., & Miyako, E. (2020). Soap Bubble Pollination. Iscience, 23(6), 101188. 

Young, S. N., Kayacan, E., & Peschel, J. M. (2019). Design and field evaluation of a ground robot for 
high-throughput phenotyping of energy sorghum. Precision Agriculture, 20(4), 697-722. 

Yuan, T., Zhang, S., Sheng, X., Wang, D., Gong, Y., & Li, W. (2016). An autonomous pollination robot 
for hormone treatment of tomato flower in greenhouse. In 2016 3rd International Conference on 
Systems and Informatics (ICSAI) (pp. 108-113). IEEE. 

Zattara, E. E., & Aizen, M. A. (2020). Worldwide occurrence records reflect a global decline in bee 
species richness. Available at SSRN 3669390. 

Zhang, Q., Karkee, M., & Tabb, A. (2019). The use of agricultural robots in orchard management. arXiv 
preprint arXiv:1907.13114. 

Zhang, Z., Heinemann, P. H., Liu, J., Baugher, T. A., & Schupp, J. R. (2016). The development of 
mechanical apple harvesting technology: A review. Transactions of the ASABE, 59(5), 1165-1180. 

 

2132804


	Untitled
	Untitled
	NSF BIOGRAPHICAL SKETCH
	(a) PROFESSIONAL PREPARATION
	(b) APPOINTMENTS
	(c) PRODUCTS
	Products Most Closely Related to the Proposed Project
	Other Significant Products, Whether or Not Related to the Proposed Project
	(d) SYNERGISTIC ACTIVITIES
	NSF CURRENT AND PENDING SUPPORT
	PROJECT/PROPOSAL CURRENT SUPPORT
	PROJECT/PROPOSAL PENDING SUPPORT
	IN-KIND CONTRIBUTIONS CURRENT

	NSF CURRENT AND PENDING SUPPORT
	PROJECT/PROPOSAL CURRENT SUPPORT
	PROJECT/PROPOSAL PENDING SUPPORT


